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James Franklin is a philosopher, historian of ideas
and mathematician who taught at the University
of New South Wales in the School of Mathemat-
ics and Statistics from 1981 until his retirement in
2019. His undergraduate study in mathematics and
philosophy was at the University of Sydney (1971–
74), where hewas influenced by philosophersDavid
Stove andDavidArmstrong. He completed his PhD
on algebraic groups in 1981 at the University of
Warwick.

He founded the “Sydney School” in the philosophy
ofmathematics, whose view is explained in his 2014
book An Aristotelian Realist Philosophy of Mathem-
atics. His 2003 book Corrupting the Youth is a po-
lemical history of Australian philosophy. His 2009
book What Science Knows: And How It Knows It

presents an objective Bayesian, realist philosophy of
science.

Introduction

Mathematics can seem to scientists and science
teachers a confusing pile of formulas, methods
and calculations, not a genuine science with a sub-
ject matter of its own. Aristotelian realist philo-
sophy of mathematics holds on the contrary that
mathematics is as much a science of an aspect
of reality – physical reality and any other reality
theremight be – as physics, biology and sociology.
Mathematics, it says, is about the quantitative as-
pects of the world (such as ratios) and the struc-
tural ones (such as symmetry). Those properties
are as real as mass or biodiversity.

That view of mathematics has important implica-
tions for both mathematics teaching and science
teaching. For mathematics teaching, it suggests
the need formore attention tomathematical mod-
elling and less to the more internal techniques of
calculation andmanipulation of formulas. For sci-
ence teaching, it suggests an approach that high-
lights an awareness of mathematical properties in
science, rather than sweeping mathematics under
the carpet as maths teachers’ business.

Aristotelian realism versus Platonism and
nominalism

What is mathematics about? We know what bio-
logy is about; it’s about living things. Or more ex-
actly, the living aspects of living things – the mo-
tion of a cat thrown out of a window is amatter for
physics, but its physiology is a question of biology.
Oceanography is about oceans; sociology is about
human behaviour in the mass long-term; and so
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on. When all the sciences and their subject mat-
ters are laid out, is there any aspect of reality left
over for mathematics to be about? That is the ba-
sic question in the philosophy of mathematics.

The field of philosophy of mathematics is mainly
occupied by two longstanding traditions, Platon-
ism and nominalism, which have opposite an-
swers to this question. Both answers are problem-
atic and Aristotelian realism offers a “third way”
that is more closely aligned to how mathemat-
ics works in science (Franklin, 2014a, Jacquette,
2014, Gillies, 2015; quick introduction in Frank-
lin, 2014b, survey in Franklin, 2021).

According to Platonism – the name deriving from
Plato’s view that eternal realities exist in a non-
physical realm – the “objects” named in mathem-
atical discourse, such as numbers, sets and func-
tions, are fully real but not part of our (physical)
world. They exist in a Platonic heaven of “abstract
objects”, eternal, non-physical and non-causal.

What makes Platonism attractive is our solid feel-
ing that mathematics discovers truths about a pre-
existing terrain. Take the subtleties of the distri-
bution of primes. Some numbers are prime, some
not. A dozen eggs can be arranged in cartons of
6×2 or 3×4, but eggs are not sold in lots of 11 or
13 because there is no neat way of organising 11
or 13 of them into an egg carton: 11 and 13, un-
like 12, are prime, and primes cannot be formed
by multiplying two smaller numbers. The idea is
very easy to grasp. But there is a lot to discover
about it.

It is found that theway inwhich the primes are dis-
tributed among numbers involves a complex in-
terplay of pattern and irregularity. On the small
scale, the latter is most evident: there are long
stretches without any primes at all – indefinitely
long stretches, in fact. (For example, there are

none between 113 and 127.) At the same time,
it is widely believed that there are infinitely many
“prime pairs”; that is, pairs of numbers only two
apart that are both prime, such as 41 and 43.

When we turn to the large scale, the impression of
disorder fades and a pattern starts to emerge after
all. Primes become gradually less dense as one
counts up: the density of primes around a large
number is inversely proportional to its order of
magnitude. The density of primes around a tril-
lion (1012), for example, is about half what it is
around a million (106). It’s all “out there”, and it
appears to be about a realm of abstract numbers.
It is not about anything physical, but neither did
we make it up. We have a sense of a non-physical
reality, in some sense not our choice and waiting
for us to discover it.

Platonism is also suggested by role of idealisa-
tion in mathematical applications in science. Ar-
istotle himself describes Protagoras “refuting” the
geometers by pointing out that a hoop touches a
straight line at more than one point, unlike the
perfect circles that geometers study. (Metaphys-
ics 997b35-998a4). The perfect circles, it seems,
must live in a realm other than the physical one
we sense and measure.

Nominalism has been Platonism’s main rival in
the philosophy of mathematics. Taking its name
from nomina, meaning names, it says that math-
ematical entities do not exist at all and the words
apparently referring to them are “mere names”.
Only physical objects really exist, and the math-
ematical language that appears to refer to math-
ematical objects is just a language of science, or
manipulation of formal symbols, or fictions, or
methods of deriving one contentful truth from
another (nominalism divides into several schools
such as formalism, logicism and fictionalism, the
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differences among which are not important here).

An often implicit version of nominalism rife
among scientists thinks of mathematics as a
toolkit of methods, formulas, tables of Laplace
transforms and the like, or as a ”theoretical juice
extractor” for getting predictions from theories,
but not itself actually about any aspect of real-
ity. Sadly that view, understandable enough in
physicists and engineers, is reinforced by the rule-
based style of teachingmathematics that often fills
the traditional school curriculum. (”Minus times
minus equals plus/ The reason for this we need
not discuss.”). That reinforces a view of math-
ematics as detached from real science. Einstein,
though one of the most mathematical of physi-
cists, was typical of them in claiming a divorce
between mathematics and physical reality, saying
“As far as the laws of mathematics refer to reality,
they are not certain; and as far as they are certain,
they do not refer to reality” (Einstein, 1954, 233).

Nominalism has two problems. First, it fails to ex-
plain our felt sense of exploring a pre-existing ter-
ritory, as in the distribution of primes. Secondly, it
fails to answer the problem raised in the celebrated
essay of 1960 by the physicist Eugene Wigner, of
the “unreasonable effectiveness of mathematics in
the natural sciences” (Wigner, 1960). How could a
mere language deliver such extraordinarily effect-
ive and unexpected results in so many natural sci-
ences?

Aristotelian realism offers to break the deadlock
between Platonism and nominalism. It holds that
mathematics is a contentful science of realities (as
the Platonist says) but that those realities – at least
many of them – are literally part of, or realised in,
physical reality (Franklin, 2014a).

But Aristotelian realism is not just an answer to
an existing philosophical debate. If we just look at

howmathematics works (especially applied math-
ematics), free of philosophical preconceptions, it
is possible to see what properties of reality are
mathematical (rather than physical, biological and
so on) and form the true subject-matter of math-
ematics. Imagine the Earth in the Jurassic Era, be-
fore there were humans to think mathematically
and write formulas.

An artist’s impression can be seen here.

There were dinosaurs large and small, trees, vol-
canoes, flowing rivers and winds …Were there, in
that world, any properties that we would recog-
nize as being of a mathematical nature (to speak
as non-committally as possible)? That is, were
there, among the properties of the real things in
that physical world, some that we would naturally
recognise as mathematical (over and above phys-
ical, chemical and biological properties)?

There were many such properties. Symmetry, for
one. Like most higher animals, the dinosaurs
had approximate bilateral symmetry. The trees
and volcanoes had an approximate circular sym-
metry with random elements—seen from above,
they look much the same when rotated around
their axis. But symmetry, whether exact or ap-
proximate, is a property that is not exactly phys-
ical. Non-physical things can have symmetry; ar-
guments and palindromes, for example, have sym-
metry if the last half repeats the first half in the
opposite order. Symmetry is an uncontrover-
sially mathematical property, and a major branch
of pure mathematics—group theory—is devoted
to classifying its kinds. When symmetry is real-
ized in physical things, it is often very obvious to
perception—even animals as primitive as bees can
perceive symmetry. Symmetry, like other math-
ematical properties, can have causal powers, un-
like abstracta as conceived by Platonists.
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Another mathematical property, which like sym-
metry is realizable in many sorts of physical
things, is ratio. The height of a big dinosaur stands
in a certain ratio to the height of a small dino-
saur. The ratio of their volumes is different—in
fact, the ratio of their volumes is much greater
than the ratio of their heights, which iswhatmakes
big dinosaurs ungainly and small ones sprightly.
A given ratio is something that can be the rela-
tion between two heights, or two volumes, or two
time-intervals; a ratio is just what those relations
between different kinds of physical entities share,
and is thus amoremathematical property than the
physical lengths, volumes, and times themselves.
Ratio is what wemeasure whenwe determine how
a length (or volume, or time, etc) relates to an ar-
bitrarily chosen unit (Michell, 1994). It is one of
the basic kinds of number.

Properties of reality like symmetry and ratio
and others (such as flows, order relations, con-
tinuity and discreteness, alternation, linearity,
feedback, network topology)—which are measur-
able, perceivable and causal, like other scientific
properties—must be the subject of some science.
That science is mathematics (or at least part of
mathematics). Aristotelian realist philosophy of
mathematics has consequences for both mathem-
atics teaching and science teaching.

Mathematics teaching: Mathematical
modelling

Mathematics teachers cannot allow themselves be
trapped into a servicing role, as if their task is
to supply students with methods which will help
when the student comes to subjects that really
grapple with the world, like physics. (Applied)
mathematics is about the real world too. School
and college mathematics education needs to in-

clude a component of mathematical modelling,
the process (as Aristotelian realists would put it)
of finding the mathematical structure of the real
world that is relevant to solving some problem.

A simple problem is: could a water shortage in a
location like Los Angeles or Adelaide be alleviated
by towing an iceberg from Antarctica? Anyone –
or any class of students divided into groups – can
usefully brainstorm ideas on what quantitative in-
formation is needed to address the problem. (How
big are icebergs down there? How long would it
take to tow them? How much would melt on the
way? Would the amount left be a worthwhile pro-
portion of the city’s water consumption? What can
be done with them when they arrive?) Given an
hour, groups can report out to a class on a plan
of attack. Given a week, they can do research and
write a respectable feasibility study (Banks, 2013,
ch. 6). A report lays out the mathematical struc-
ture of the case, with a view to making recom-
mendations.

As the example shows, the teaching of mathem-
atical modelling is very different in style as well
as content from pure mathematics. Where pure
mathematical skills are usually assessed by exams
in which individuals solve short discrete puzzles
which they get right or wrong, modelling is most
naturally done collaboratively over a considerable
time period, using outside research, and commu-
nicating via a written or oral joint report. That is
similar to how mathematics is really done in in-
dustrial settings.

As in pure mathematics, mathematical modelling
is not all bare hands from a standing start, as in
the icebergs problem. Education needs to provide
tools to think with. Population modelling has
proved a good test bed for explaining basic math-
ematical models like exponential growth.
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Example: Suppose a lake has some lily pads in it
and suppose each pad replicates itself once a week.
If it takes half a year for half the lake to become
covered in lily pads, how long will it take for the
entire lake to be covered? (Vandermeer and Gold-
berg, Population Ecology, 3)
Answer: 1 week.
Conclusion: Exponential growth can pick up
speed.

Exponential growth has the typical ”rising graph”
shape, with typical formula P = Aat (with a > 1)
In the lily-pad example, a = 2 (where time t is in
weeks).

Fig 1: Graph of exponential growth of population
against time

A model such as this formula means a mathem-
atical description of the (possible) structure of a
situation (such as how a population grows over
time). To say that it is a possible structure, or a
tool to think with, is not to say that actual pop-
ulations must fit the model. Given observations
of a real population, some inference is needed to
see if its growth approximately fits an exponential
shape.

An example is: Observations of the number of
aphids on a typical corn plant in a field are given
in the table below. Action must be taken when the
number of aphids per plant reaches 40. At what
date should that be predicted? (Vandermeer and
Goldberg, 6-7)

Table 1 Number of Aphids Observed per Plant
in a Milpa (Corn and Beans) in the Highlands of
Guatemala (Morales, 1998)

If the growth is close to exponential, then the log-
arithms of the number of aphids (last column)
should be approximately on a straight line. We
can then plot the logarithms against time, check
(by eye or by statistical software) if the five points
are approximately on a straight line. In fact they
are. We can then project forward to estimate the
approximate date when 40 aphids per plant will be
reached.

What about the world population of humans? In
the 1960s there were many alarmist predictions
that exponential growth of the world’s population
would lead to disaster in a few decades. But the
world’s birth rate has fallen dramatically since that
time. The UN’s predictions for world population
out to 2100 can be seen here. It is a good lesson on
the need to fit models to data with care.

Excellent educational resources for mathematical
modelling are available from comap(The Consor-
tium for Mathematics and Its Applications). Since
1985 they have run an undergraduate Mathemat-
ical Contest in Modeling and have recently begun
one for high schools.

Fig 2. The classic body types: different height-
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width proportions are easily perceived (Image
credit: Granito Diaz, Wikimedia file Body-
types.jpg)

Science teaching: Awareness of mathem-
atical properties

Philosophy of science and science teaching are
incomplete without some sense of the difference
between physical properties and mathematical
properties. Physical properties, like mass, colour,
being gold and being a possum, are observable
realities which must be studied, at least in part,
observationally. Mathematical properties, like ra-
tio, symmetry, alternation and randomness, are
also observational realities, but they are studied by
the a priori methods of mathematics. Appreciat-
ing the mathematical aspects of physical reality is
a matter of calling attention tomathematical com-
monalities between different physical situations.

Take as an example perhaps the most basic purely
mathematical property, ratio or proportion, such
as the proportion of length to height of a page or
computer screen or image (the “aspect ratio”). It
is an easily observable property of reality. Our
visual systems are well set up to perceive immedi-
ately differences in ratio such as those in the classic
body types (Fig 2)

But ratios are much more mathematical and ab-
stract than lengths themselves. A given ratio can
exist between two lengths, or two masses, or two
time intervals. The truths about ratios are prov-
able truths of mathematics, such as the very an-
cient Greek result of the incommensurability of
the ratio of the diagonal and side of a square.

Despite their abstractness, ratios have practical
scientific consequences, as we saw above in the

case of the explanation of why small animals can
scurry but large ones lumber. Another place
where the scientific role of proportion is easily
appreciated comes from the central role in sci-
entific education played by the laws of proportion
that formed a key part of the Scientific Revolu-
tion. In the high period of the Scientific Revolu-
tion, a number of lawswere discoveredwhichwere
mathematical in one sense, in that they ascribed to
nature simple formulas – indeed, formulas in gen-
eral of simple proportion. They were not purely
mathematical, in the sense that (to the disappoint-
ment of some) they are not derivable solely from
mathematical axioms. They needed some input –
however small – of empirical and observationally-
derived fact.

A list of the Scientific Revolution’s laws of propor-
tion, with approximate dates, includes:

• Kepler’s Second Law: The area swept out by a
radius from the sun to a planet is proportional
to the time taken (1609).

• Snell’s Law: When light is refracted at a sur-
face, the sine of the angle of refraction is pro-
portional to the sine of the angle of incidence
(1602, 1621, 1637).

• Galileo’s Law of Uniform Acceleration: The
speed of a heavy body falling from rest is pro-
portional to the time from dropping (1638).

• Pascal’s Law: Thepressure in an incompressible
fluid is proportional to depth (1647).

• Hooke’s Law: The extension of a spring is
proportional to the force exerted to stretch it
(1660).

• Boyle’s Law: For a fixed quantity of gas at con-
stant temperature, pressure is inversely propor-
tional to volume (1662).
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• Newton’s proposition on the prism: there is
some kind of proportionality between refran-
gibility and colour of light (1672).

• Newton’s Second Law of Motion: The accelera-
tion of a body is proportional to the total force
acting on it (1687).

• Newton’s Law of Gravity: The force of grav-
ity exerted by one body on another is propor-
tional to the masses of each and inversely pro-
portional to the square of the distance between
them (1687).

• Newton’s Law of Cooling: The rate of temperat-
ure loss from a body is proportional to the dif-
ference in temperature between the body and
its surroundings (1701).

It was remarkable how tractable Nature proved
to be not only to being mathematised, but math-
ematised in the simplest way possible, by laws of
simple proportionality. That allows calculation of
results with very simple mathematics, fortunately
for both early scientists and for modern science
students. What science teachers should emphas-
ize is that the proportionalities are not in formulas
imposed on reality, but in physical nature itself.
The formulas merely describe a pre-existing real-
ity.

Many other examples could be given of purely
mathematical properties of things that play a cru-
cial role in science. Symmetry has become cru-
cial to science, especially physics, and the abil-
ity of symmetry arguments to generate contentful
scientific truths is extraordinary. (Franklin 2017)
Alternation, as in stripes and wallpaper patterns,
is another recurrent mathematical theme in sci-
ence; for example, in pendulum motion the grav-
itational cause is a matter of physics but oscilla-
tion itself is a mathematical property. Continuous

variation (whether over time or in space), studied
so successfully by the calculus, is a central theme
in most of classical science, such as planetary mo-
tion and fluid flow. Randomness, in the sense of
patternlessness, is central to any stochastic process
from coin-throwing to traffic flow and stock mar-
kets.

What is essential for science teaching and for any
appreciation of the big picture of how science
works is some feel for the difference between a
physical property and a mathematical one. That
gives one some grasp of which methods will be
needed to study the property: in particular, that
for mathematical properties, mathematical meth-
ods such as conceptual analysis, definition and
proof of theorems will play the main role.

Science teaching: Awareness of mathem-
atical necessities in reality

Science and science teaching rightly highlight the
laws of nature, such as the law of gravity. It is
generally understood that such laws have only an
“empirical necessity”, less than absolute. Indeed,
the original point of calling them “laws”, as be-
came popular in the time of the early Royal Soci-
ety, was to suggest they were commands laid down
by God to which there could in principle be mi-
raculous exceptions (Oakley 1961). But there are
stronger, more absolute, necessities than that, also
found directly in the real world. Scientists and sci-
ence teachers need to be aware of the difference.

Consider what tiles I should order for my bath-
roomfloor, which is close to a flat Euclidean plane.
I can order square ones or hexagonal ones, as in
the figures: the plane can be tiled in a regular fash-
ion with those two shapes.
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Fig 3. Tiling of the plane by identical squares

Fig 4. Tiling of the plane by identical regular
hexagons

But there is no point ordering a load of regular
pentagonal tiles. They just cannot be fitted to tile
the bathroom floor. There are big pieces of floor
left over between the tiles no matter how they are
laid down, which defeats the purpose of tiling.

Fig 5. A regular pentagon, which cannot tile the
plane

The necessity with which bathroom floors can be
tiled with regular square or hexagonal tiles but not
with pentagonal ones is stronger than that of the
laws of nature. It is mathematical (Franklin 2014a,
ch. 5).

Another example of an absolute, mathematical ne-
cessity (more exactly, impossibility) in the real
world was discovered by Galileo during his ef-
forts to establish the law of free fall. It is one of
the most remarkable demonstrations of the power
of a priori mathematical reasoning in dynamics.
When first considering what law should be fol-
lowed by falling heavy bodies (given they go faster
as they fall), he wondered about how to distin-
guish between the two simplest theories: the per-
haps most natural one that speed is proportional
to distance travelled from the start, and the equally
simple but perhaps less natural one that speed is
proportional to time from the start (that is, the
body is uniformly accelerated, which is the correct
answer). Galileo realised, and was able to demon-
strate, that the first theory needs no observations
to refute it. It is absolutely impossible that acceler-
ation should be proportional to the distance trav-
elled (Norton and Roberts 2012).
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From the falsity of the theory of the proportion-
ality of speed to distance there does not follow, of
course, the truth of the (true) alternative theory of
the proportionality to time. There are other pos-
sible laws. But it leaves that theory as the natural
simple alternative, thus guiding confirmation by
experiment.

A third example has become well-known. It is
a beautiful problem often used to introduce stu-
dents to graph theory, Euler’s eighteenth-century
explanation of why it is impossible to walk over all
of the seven bridges of Königsberg once and once
only. The bridges connected two islands and two
riverbanks as shown in the diagram. The citizens
of Königsberg suspected from trial and error that
it was not possible to walk over all the bridges,
without walking over at least one of them twice.

Fig 6. The seven bridges of Königsberg, connect-
ing two banks and two islands

Euler proved they were right. His proof is purely
in terms of a very general aspect of geometry –
the topology or interconnections of the bridges
and land areas. (Euler begins his paper by not-
ing it belongs to a new, non-quantitative part of
geometry, the “geometry of site”; the field is now
called network topology.) There is no idealisation
or approximation involved in drawing the dia-
gram; although a simplified representation of the
city, it contains all the relevant geometrical fea-
tures and the proof applies directly to the systemof

real bridges and land areas, demonstrating an im-
possibility about physical reality (Franklin 2014a,
ch. 13).

The necessities involved in tiling, in Galileo’s dis-
covery about speed and distance, and the Königs-
berg bridges, are mathematical ones and are not
subject to miraculous exception. Science teaching
is not complete unless such necessities are distin-
guished from the weaker “necessities” of natural
laws, such as the law of gravity.

Science teaching: Idealisation and ap-
proximation

Although we cannot go into it at length here, Aris-
totelian realism raises important questions about
the nature of idealisation in science. In saying
that mathematical laws of science are literally true
of the observable world, modern Aristotelians to
some extent make common cause with the Ar-
istotelians of Galileo’s day who objected that his
ideal world of frictionless falling bodies was a fic-
tion with no relevance to the real world. Mod-
ern Aristotelians do agree that idealisation is use-
ful, but only on certain conditions. They can only
work when the idealisation is an approximation to
the real (usually more complicated) system, and
the ideal model is “structurally stable”, in the sense
that results about it carry across, approximately, to
the real situation that it approximates (Franklin,
2014a, 224-9).

Something of that idea was visible even in Galileo
himself. In explaining Galileo’s method of ideal-
isation, Matthews (2006) records the objections
of his Aristotelian patron, Guidobaldo del Monte:
“When del Monte tells Galileo that he has done an
experimentwith balls in an iron hoop and the balls
do not behave as Galileo asserts, Galileo replies
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that the hoopmust not have been smooth enough,
that the balls were not spherical enough and so
on.” That is only a sufficient reply if in fact making
the hoop more smooth and the balls more spher-
ical will cause the observed results to approximate
more closely to those of the ideal model. Approx-
imation is essential to idealisation.

Conclusion

Aristotelian realism gives a new perspective (or
rather, a very old perspective revived) on both
mathematics itself and the role of mathematics
in science. In holding that mathematics can ap-
ply directly to physical reality, it brings math-
ematics in closer contact with science. Its vis-
ion of mathematics as a contentful science of the
world we live in, and one with necessary truths,
allows mathematics to regain its rightful place at
the centre of civilisation’s achievements (Franklin,
2018). Its explanation of which properties exactly
are mathematical (namely, quantitative and struc-
tural ones) allows philosophy of science and sci-
ence teaching to properly understand the division
of labour between mathematics and science, and
hence the true role of mathematics in science.
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